云模型方法在选煤厂跳汰系统中的故障检测与诊断  被引量:3

Fault detection and diagnosis for coal preparation plant jigging system based on cloud model and information fusion

在线阅读下载全文

作  者:范大鹏[1] 王雪丹[2] 

机构地区:[1]黑龙江科技学院计算机与信息工程学院,哈尔滨150027 [2]黑龙江科技学院电气与信息工程学院,哈尔滨150027

出  处:《黑龙江科技学院学报》2011年第4期289-292,共4页Journal of Heilongjiang Institute of Science and Technology

摘  要:针对传统的故障检测与诊断方法的局限性,笔者结合信息融合思想和云模型算法,提出了用于选煤厂跳汰系统故障检测与诊断的云模型方法。采用一维云模型推理映射算法,代替传统神经网络方法的训练过程,融合多源信息合并处理,保证检测和诊断的正确性,并进行实时检测仿真。结果表明:系统辨识精度较高,能很好地反应跳汰系统工作情况,并能及时判断。该方法用于选煤厂跳汰系统故障检测与诊断可行。Aimed at eliminating negative features of the conventional fault detection and diagnosis,this paper proposes the cloud model method designed for fault detection and diagnosis for coal preparation plant jigging system,combined with the cloud model ideas and information fusion algorithm.The method involves substituting reasoning mapping algorithm based on one-dimensional cloud model for conventional neural network training process for the consolidation of multi-source information integration to ensure the accuracy of detection and diagnosis and real-time detection simulation.The results show that the system,capable of a higher accuracy identification,a better response to jigging system work,and timely judgments,promises to come into feasible use in fault detection and diagnosis of coal preparation plant jigging system.

关 键 词:云模型 推理映射 信息融合 神经网络 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TD928[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象