Analysis of a class of spectral pair conditions  被引量:2

Analysis of a class of spectral pair conditions

在线阅读下载全文

作  者:LI JianLin 

机构地区:[1]College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China

出  处:《Science China Mathematics》2011年第10期2099-2110,共12页中国科学:数学(英文版)

基  金:supported by the Key Project of Chinese Ministry of Education (Grant No. 108117);National Natural Science Foundation of China (Grant No. 10871123, 11171201)

摘  要:For an expanding integer matrix M ∈ Mn(Z) and two finite digit sets D, S C Z^n with O∈ D ∩ S, we shall investigate and study the possible conditions on the spectral pair (μM,D,A(M, S)) associated with the iterated function systems {Фd(X) = M^-1(x + d)}d∈D and {φs(x) = M^*x + s}s∈S in the case when |D|= |S| = | det(M)|. Under the condition that (M^-1D, S) is a compatible pair, we obtain a series of necessary and sufficient conditions for (μM,D, A(M, S)) to be a spectral pair. These conditions include how to characterize the invariant sets A(M, S) and T(M, D) such that A(M, S) = Zn and μL(T(M, D)) = 1 which play an important role in the number system research and in the construction of Haar-type orthogonal wavelet basis respectively.For an expanding integer matrix M ∈ Mn(Z) and two finite digit sets D,S Zn with 0 ∈ D ∩ S,we shall investigate and study the possible conditions on the spectral pair(μM,D,Λ(M,S)) associated with the iterated function systems {φd(x) = M-1(x + d) }d∈D and {ψs(x) = M-x + s}s∈S in the case when |D| = |S| = | det(M) |. Under the condition that(M-1D,S) is a compatible pair,we obtain a series of necessary and sucient conditions for(μM,D,Λ(M,S)) to be a spectral pair. These conditions include how to characterize the invariant sets Λ(M,S) and T(M,D) such that Λ(M,S) = Zn and μL(T(M,D)) = 1 which play an important role in the number system research and in the construction of Haar type orthogonal wavelet basis respectively.

关 键 词:iterated function system self-affine measure spectral pair compatible pair digit set 

分 类 号:O151.21[理学—数学] TN244[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象