检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空技术研究中心 [2]中国人民解放军94637部队
出 处:《飞机设计》2011年第5期36-39,63,共5页Aircraft Design
摘 要:飞机襟翼使用过程中存在失效判据不易确定的问题,目前襟翼机构滑轨滑轮磨损间隙许用量主要是通过试验及使用统计数据分析确定。针对新研机构缺乏试验及使用数据的问题,通过对影响磨损间隙最大许用量的因素分析,提出应用神经网络学习确定襟翼滑轨滑轮间隙最大许用量的预测方法。算例验证表明,运用神经网络方法预测得到的滑轨滑轮架的间隙最大许用量误差小于10%,说明方法有效。该方法对当前新研机构的失效判据确定具有重要的工程意义。In the operational process of the aircraft flap it is not easy to determine the failure criterion. The largest clearance wear loss allowed, that is, the clearance threshold determination is difficult but according to the experimental and statistical data. The new mechanism has no statistical data and the experimental data is a little. Through the analysis of influencing factors to the largest clearance wear loss allowed, the Neural Networks (NN) learning algorithm was proposed. And the examples authentication's results showed that the prediction error of the maximum allowable amount of the gap between the slide and the pulley's shelf is less thanl0%, the method was feasible and accurate for the prediction of wear loss threshold. The method to threshold determinations has actual significance to new mechanisms.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44