检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《上海师范大学学报(自然科学版)》2011年第2期139-144,共6页Journal of Shanghai Normal University(Natural Sciences)
基 金:supported by National Natural Science Foundation of China(10971139)
摘 要:研究了可积系统(称为未扰系统).{xx=-y(1+x4).y=x(1+x4).在几类多项式扰动之下极限环的个数.即当未扰系统加上低次扰动后,考虑扰动系统:.xx=-y(1+x4.)x=-y(1+x4),.y=x(1+x4)+εPn(x,y),+εQn(x,y),1≤n≤4,其中Pn,Qn是任意的n次多项式,讨论了它们从未扰系统的周期环处分支出极限环的个数.通过计算扰动系统的一阶M eln i-kov函数以及估计其根的个数得到从未扰系统的周期轨处分支出极限环的最大个数.证明了未扰系统加上1次或者2次扰动项时,扰动系统最多有1个极限环;加上3次或者4次扰动项时,扰动系统最多有4个极限环.We consider the number of limit cycles of the following integrable system,which is called the unperturbed system,with the perturbation of some polynomials:{x·x=-y(1+x4)y·=x(1+x4).That is,considering the perturbed system under the low degree perturbations:x·x=-y(1+x4)·x=-y(1+x4),y·=x(1+x4)+εPn(x,y),+εQn(x,y) with 1≤n≤4,where Pn,Qn are arbitrary polynomials of degree n,the author studies the number of limit cycles bifurcating from the period annulus of the unperturbed system.By calculating the first order Melnikov function of the system and estimating the number of zeros of the function,we obtain the maximal number of limit cycles which can bifurcate from the periodic orbits of the system.One can prove that with the perturbation of degree 1 or 2,the perturbed system has at most 1 limit cycle;and with the perturbation of degree 3 or 4,the perturbed system has at most 4 limit cycles.
关 键 词:极限环 一阶Melnikov函数 近哈密尔顿系统
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.71.161