检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]常州市武进规划与测绘院,江苏常州213159 [2]江苏省工程物理勘察院,江苏南京210008
出 处:《地理空间信息》2011年第5期23-25,163,共3页Geospatial Information
基 金:江苏省高校自然科学研究资助项目(10KJB420001)
摘 要:通过对离散GPS/水准点观测数据进行拟合从而获得区域内任意一点的高程异常是工程实践中经常遇到的问题。利用RBF神经网络方法进行了GPS水准高程拟合实验,并将得到的高程异常结果与采用BP神经网络方法和二次曲面拟合法得到的结果进行了分析比较;通过3种方式的分析比较,证明利用RBF神经网络进行GPS高程拟合的可行性以及相比其他方法所具备的优势。To determine an orthometric height using GPS,it is necessary to know the geoid/quasi-geoid undulation.This paper had a detail introduction of the structure and basic principle of RBF neural network,and on this basis,mainly analyzed RBF neural network's algorithms for GPS elevation fitting,including basis function centers and width parameters determined.Based on the MATLAB,selecting some GPS datas from a region,this paper mainly focused on the use of RBF neural network for GPS elevation fitting,the result of which was compared with BP neural network and fitting method,and the accuracy of the convertion of GPS elevation was analysed last.Through the analysis and comparison of this three ways,this paper tried to prove that using RBF neural network for GPS elevation fitting was of feasibility and had some advantages compared to other methods.
分 类 号:P228.42[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249