检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东大学数学学院,济南250100 [2]兰州大学数学与统计学院,兰州730000
出 处:《运筹学学报》2011年第3期51-56,共6页Operations Research Transactions
基 金:National Natural Science Foundation of China(61070230,11026184,11101243);Independent Innovation Foundation of Shandong University(2009hw001);Research Fund for the Doctoral Program of Higher Education of China(20100131120017);the Scientific Research Foundation for the Returned Overseas Chinese Scholars
摘 要:令K_n^c表示n个顶点的边染色完全图.令△^(mon)(K_n^c)表示K_n^c的顶点上关联的同种颜色的边的最大数目.如果K_n^c中的一个圈(路)上相邻的边染不同颜色,则称它为正常染色的.B.Bollobas和P.Erd(o|¨)s(1976)提出了如下猜想:若△^(mon)(K_n^c)<[n/2],则K_n^c中含有一个正常染色的Hamilton圈.这个猜想至今还未被证明.我们研究了上述条件下的正常染色的路和圈.Let Kn^c denote a complete graph on n vertices whose edges are colored in an arbitrary way. Let △^mon(Kn^c) denote the maximum number of edges of the same color incident with a vertex of Kn^c A properly colored cycle (path) in Kn^c is a cycle (path) in which adjacent edges have distinct colors. B. Bollobels and P. ErdSs (1976) proposed the following conjecture: If △^mon(Kn^c) 〈 [n/2J, then Kn^c contains a properly colored Hamiltonian cycle. This conjecture is still open. In this paper, we study properly colored paths and cycles under the condition mentioned in the above conjecture.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222