完全图中的正常染色的路和圈(英文)  

Properly Colored Paths and Cycles in Complete Graphs

在线阅读下载全文

作  者:王光辉[1] 周珊[2] 

机构地区:[1]山东大学数学学院,济南250100 [2]兰州大学数学与统计学院,兰州730000

出  处:《运筹学学报》2011年第3期51-56,共6页Operations Research Transactions

基  金:National Natural Science Foundation of China(61070230,11026184,11101243);Independent Innovation Foundation of Shandong University(2009hw001);Research Fund for the Doctoral Program of Higher Education of China(20100131120017);the Scientific Research Foundation for the Returned Overseas Chinese Scholars

摘  要:令K_n^c表示n个顶点的边染色完全图.令△^(mon)(K_n^c)表示K_n^c的顶点上关联的同种颜色的边的最大数目.如果K_n^c中的一个圈(路)上相邻的边染不同颜色,则称它为正常染色的.B.Bollobas和P.Erd(o|¨)s(1976)提出了如下猜想:若△^(mon)(K_n^c)<[n/2],则K_n^c中含有一个正常染色的Hamilton圈.这个猜想至今还未被证明.我们研究了上述条件下的正常染色的路和圈.Let Kn^c denote a complete graph on n vertices whose edges are colored in an arbitrary way. Let △^mon(Kn^c) denote the maximum number of edges of the same color incident with a vertex of Kn^c A properly colored cycle (path) in Kn^c is a cycle (path) in which adjacent edges have distinct colors. B. Bollobels and P. ErdSs (1976) proposed the following conjecture: If △^mon(Kn^c) 〈 [n/2J, then Kn^c contains a properly colored Hamiltonian cycle. This conjecture is still open. In this paper, we study properly colored paths and cycles under the condition mentioned in the above conjecture.

关 键 词:正常染色圈 完全图 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象