检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国铁道科学研究院电子计算技术研究所,北京100081
出 处:《中国铁道科学》2011年第5期132-134,共3页China Railway Science
基 金:科技部科研院所技术开发研究专项资金资助项目(2010EG123207)
摘 要:对实测风速数据进行Kalman滤波,去除实测风速数据的偏差;通过归一化处理,消除数据中的冗余成分;针对RBF神经网络的预测误差会随着时间的推移而增大的问题,采用滚动式训练方法在线训练RBF神经网络;用训练好的RBF神经网络进行风速预测,再对预测结果进行反归一化处理,得到最终的预测风速。仿真结果表明,运用基于RBF神经网络的铁路短时风速预测方法对短时风速进行预测,最大相对误差仅为5.92%,可满足铁路防灾安全监控系统中风速预测子系统的要求。The measured wind speed was processed with Kalman filter algorithm to eliminate deviations.The redundancies in the measured data were removed through normalization processing.Then,RBF neural network was online trained by using the rolling training method to deal with the problem that the prediction error of RBF neural network would increase as time went on.Finally,the wind speed was predicted by using the well-trained RBF neural network.The final forecasted wind speed was then obtained by anti-normalizing the output of RBF neural network.The simulation results show that the maximum relative error is only 5.92% using the proposed railway short-time wind speed prediction algorithm based on RBF neural network,which can satisfy the requirements of the wind forecasting subsystem in railway disaster prevention and safety monitoring system.
关 键 词:短时风速预测 Kalrnan滤波 RBF神经网络 滚动算法
分 类 号:U298.1[交通运输工程—交通运输规划与管理] P457.5[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.252.84