检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡从中[1] 王桂莲[1] 裴军芳[1] 朱星键[1]
出 处:《重庆大学学报(自然科学版)》2011年第9期148-152,158,共6页Journal of Chongqing University
基 金:中央高校基本科研业务资助(CDJXS10101107;CDJXS10100037;CDJXS11101135);教育部新世纪优秀人才支持计划项目(NCET-07-0903);教育部留学回国人员科研启动基金资助项目(教外司留[2008]101-1);重庆市自然科学基金项目(CSTC2006BB5240)
摘 要:根据30组不同电阻和温度下的沥青软化点的实测数据集,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)方法,并结合留一交叉验证(LOOCV)法对沥青软化点进行了建模和预测研究,将其预测结果与多元线性回归(MLR)模型的计算结果进行了比较。SVR-LOOCV预测的最大误差为2.1℃,远比MLR模型计算的最大误差7.9℃要小得多。统计结果表明:基于SVR-LOOCV预测结果的均方根误差(RMSE=0.75℃)、平均绝对误差(MAE=0.32℃)和平均绝对百分误差(MAPE=0.28%)相应也比MLR回归模型的预测结果(RMSE=3.3℃,MAE=2.6℃和MAPE=2.34%)要小。因此,应用SVR实时预测沥青产品的软化点,可为生产优质沥青提供准确的科学指导。According to an experimental dataset on the softening points of 30 bitumen samples under different resistances and temperatures,the support vector regression(SVR) approach combined with particle swarm optimization(PSO) for its parameter optimization is proposed to conduct leave-one-out cross validation(LOOCV) for modeling and predicting the softening point of bitumen,and its prediction result is compared with that of multivariate linear regression(MLR).The maximum error 2.1 ℃ predicted by SVR is much less than 7.9 ℃ which is calculated by MLR modeling.The statistical results reveal that the root mean square error(RMSE=0.75 ℃),mean absolute error(MAE=0.32 ℃) and mean absolute percentage error(MAPE=0.28%) achieved by SVR-LOOCV are all less than those(RMSE=3.3 ℃,MAE=2.6 ℃ and MAPE=2.34%) calculated via MLR model.This study suggests that the softening point of bitumen can be forecasted timely by SVR to provide an accurate guidance for producing of high-quality bitumen.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222