检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学测绘与国土信息工程系,长沙410083 [2]长沙市国土资源测绘院,长沙410000 [3]湖南师范大学资源与环境学院,长沙410081
出 处:《计算机工程与应用》2011年第28期120-123,208,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.40871180);国家高技术研究发展计划(863)(No.2009AA12Z206)~~
摘 要:建筑物空间聚类是实现居民地地图自动综合的有效方法。基于图论和Gestalt原理,发展了一种层次的建筑物聚类方法。该方法可以深层次地挖掘建筑物图形的视觉特性,将面状地物信息充分合理地表达在聚类结果中。依据视觉感知原理,借助Dealaunay三角网构建方法,分析了地图上建筑物的自身形状特性和相互间的邻接关系,并依据建筑物间的可视区域均值距离建立了加权邻近结构图,确定了建筑物的邻近关系(定性约束)。根据Gestalt准则将邻近性、方向性和几何特征等量化为旋转卡壳距离约束和几何相似度约束。通过实例验证了层次聚类方法得到更加符合人类认知的建筑物聚类结果。Spatial clustering provides an effective approach for generalization of residential area in automated cartographic generalization.Based on graph theory and Gestalt principle, a hierarchical approach is proposed in this paper.This approach can be utilized to discover the graphical structure formed by buildings, which is obtained with the consideration of shape, size and neighboring relations.The neighboring relations are detern3ined by Delaunay triangulation, which is a qualitative constraint among buildings.A weighted neighboring structural graph is obtained by setting visual distance as the weight of the linking edge between adjacent buildings.Two levels of quantitative constraints are developed by considering the Gestalt factors,i.e.proximity, orientation and geometry of buildings.One is the rotating calipers minimum distance;the other is the geometric similarity measure.Through experiments it is illustrated that the results by the hierarchical spatial clustering proposed in this paper are consistent with human perception.
关 键 词:空间聚类 地图自动综合 Gestalt准则 层次约束 邻近结构图
分 类 号:P208[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222