检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]61618部队 [2]中国卫星导航定位应用管理中心 [3]92493部队22分队 [4]河北科技师范学院数学与信息科技学院
出 处:《武汉大学学报(信息科学版)》2011年第10期1251-1255,共5页Geomatics and Information Science of Wuhan University
基 金:国家自然科学基金资助项目(40974009;10903032);中国卫星导航学术年会青年优秀论文获奖者资助项目
摘 要:针对标准粒子滤波算法中存在的粒子权值退化和计算量大的缺陷,提出了基于MKLD准则的粒子群优化粒子滤波算法。该方法将粒子群优化算法嵌入到粒子滤波算法的重要性采样过程中,对采样过程进行了优化,提高了粒子集的优良性的同时保证了粒子滤波状态估计的性能。同时,为了降低计算量,算法设计时基于MKLD准则自适应地选择粒子群优化算法所要优化的粒子及粒子群优化算法实施的时刻。大量的数值实验和GPS/DR组合导航仿真实验的结果验证了新方法的有效性。Considering the degeneracy of particle weight and the large amount of calculation existing in the standard particle filtering algorithm,a particle swarm optimization particle filtering method based on the criteria of MKLD is brought forward in this paper.This method embeds the particle swarm optimization algorithm into the important sampling process of the particle filtering method,to optimize the sampling process and improve the fine collection of particles while maintaining the state estimation performance of the particle filtering method.At the same time,in order to reduce the computational complexity,the new algorithm adaptively selects the optimized particles and the implementation moment of the particle swarm optimization based on the criteria of MKLD.The results of a large amount of computational experiments and the GPS/DR integrated navigation simulation experiment show the effectiveness of the novel method proposed in this paper.
关 键 词:粒子滤波 粒子权值退化 最大Kullback-Leibler距离准则 粒子群优化 全球定位系统/航位推算
分 类 号:P207[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.237