多级空间尺度下的轨迹知识发现  被引量:1

Knowledge Discovery of Trajectories Under Multi-scale Environment

在线阅读下载全文

作  者:桂智明[1] 李玉鑑[1] 陈彩[1] 

机构地区:[1]北京工业大学计算机学院

出  处:《北京工业大学学报》2011年第10期1570-1574,共5页Journal of Beijing University of Technology

基  金:国家自然科学基金资助项目(60775010);北京市自然科学基金资助项目(4113067;4112009)

摘  要:为了挖掘轨迹数据库在不同空间尺度上隐含的移动对象分布模式与运动规律,将空间语义信息融入轨迹的表达,运用空间层次关系模型结合多层关联规则挖掘方法,提出了一种基于语义位置矩阵的多尺度轨迹表达和演化方法,在此基础上设计了一种发现轨迹频繁模式的算法.试验结果表明,该方法能发现不同尺度的轨迹知识,并具有较高效率.For the purpose of mining distributions and movement patterns of moving objects at different levels of details,this paper presents a semantic-based multi-scale trajectory modeling and knowledge discovery method.Two matrixes are used to represent the multi-scale trajectory.A matrix based frequent item-set mining algorithm is developed to discover the association-rules in trajectory database.Experiments show that the approach is correct and feasible.

关 键 词:轨迹 语义 多尺度 知识发现 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象