完全二部图K_(n,n)的容错偶泛连通性和完全k(k≥3)部图K_(n,n,…,n)的泛连通性  

Edge-fault-tolerant Bipanconnectivity of Complete Bipartite Graph K_(n,n) and Panconnectivity of Complete k-partite Graph K_(n,n,…,n)(k≥3)

在线阅读下载全文

作  者:王超越[1] 

机构地区:[1]漳州师范学院数学与信息科学系,福建漳州363000

出  处:《漳州师范学院学报(自然科学版)》2011年第3期1-3,共3页Journal of ZhangZhou Teachers College(Natural Science)

摘  要:图G称为泛连通的,如果对于G中距离为d(x,y)的任意两点x和y,G中都存在每个长为l的x:y路(这里d(x,y)≤l≤︱V(G)︱-1);图G称为偶泛连通的,如果对于G中距离为d(x,y)的任意两点x和y,G中都存在每个长为l的x: y路(这里d(x,y)≤l≤︱V(G)︱-1),且l和d(x,y)有相同的奇偶性.本文用归纳法证明了以下结论:当n≥2时,在完全二部图K n,n中,若故障边数︱Fe︱≤n-2,则K n,n-Fe是偶泛连通的,并且︱Fe︱的上界n-2是最优的;完全k(k≥3)部图K n,n,…,n是泛连通的.A graph G is called panconnected if for any two vertices x and y,there exists a path connecting x and y of any length l with d(x,y) ≤ l ≤ ︱V(G)︱ -1,where d(x,y) denotes the distance between x and y;A graph G is called bipanconnected if for any two vertices x and y,there exists a path connecting x and y of any length l with d(x,y) ≤ l ≤ ︱V(G)︱- 1 and l-d(x,y) is even.In this paper,we apply induction to prove the following conclusions.when n ≥ 2,In complete bipartite graph K n,n, the number of faulty edges Fe ≤ n-2,then K n,n-Fe is bipanconnected,Moreover,the number n-2 of faulty edges tolerated is sharp;complete k-partite graph K n,n,L,n(k ≥ 3)is panconnected.

关 键 词:泛连通性 偶泛连通性 边容错 完全二部图 完全多部图 

分 类 号:O157.6[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象