一种自适应混合多目标粒子群优化算法  被引量:10

A More Useful AHMOPSO(Adaptive Hybrid Multi-Objective Particle Swarm Optimization) Algorithm

在线阅读下载全文

作  者:聂瑞[1] 章卫国[1] 李广文[1] 刘小雄[1] 

机构地区:[1]西北工业大学自动化学院,陕西西安710072

出  处:《西北工业大学学报》2011年第5期695-701,共7页Journal of Northwestern Polytechnical University

基  金:航空科学基金(20090753008)资助

摘  要:文章针对多目标粒子群优化算法多样性损失和收敛性不好的问题,提出了一种自适应混合多目标粒子群优化算法。首先,使用Sobol序列映射决策变量初始值,使得初始解集在全决策空间范围有更均匀的分布。使用线性递减权重法调整粒子群算法的权重,增强算法收敛性。提出了使用基于多样性指标SP的自适应变异算子增加种群多样性的同时,还提出了在最优档案集中,使用基于改进的世代距离指标GD的自适应混沌搜索增强算法局部搜索能力。最后,将文中提出的改进算法与MOPSO(基本多目标粒子群优化算法)和NSGA2对比,结果显示出该算法能够在保持优化解收敛性的同时获得更好的多样性。Aim. The introduction of the full paper reviews a number of papers in the open literature and then proposes AHMOPSO algorithm, which we believe is better and is explained in sections 1, 2 and 3. Section 1 briefs past research. The core of section 2 consists of: "Firstly, the initial solution sets are mapped by the Sobol sequence to distribute the decision variables uniformly. And the linear descending weight is utilized to enhance the convergence of the algorithm. The adaptive mutating operator based on the diversity index SP is brought to add the variety of the chromosomes. In addition, the adaptive chaos searching operator based on the improved generation distance index GD is adopted to enhance the local search ability. "Simulation results, presented in Tables 1 through 3 and Figs. 2 through 5, compare our AHMOPSO algorithm with three generally used algorithms; the comparison shows preliminarily that AHMOPSO can indeed obtain better convergence and diversity.

关 键 词:多目标粒子群优化 Sobol序列 自适应 变异算子 混沌搜索 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象