检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖州师范学院信息与工程学院,浙江湖州313000
出 处:《计算机应用研究》2011年第11期4361-4363,4367,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(60872057);浙江省自然科学基金资助项目(R1090244;Y1080212;Y1100095);浙江省科技计划资助项目(2010C33G2200008);湖州市自然科学资金资助项目(2010YZ04);湖州科技攻关计划资助项目(2010GG22)
摘 要:提出基于白化散度差矩阵的独立元分析算法,增加不同类表情之间的类间距离,减弱人脸个体差异性信息对表情识别的干扰,避免传统的二维主元分析方法(2DPCA)以总体散布矩阵作为产生矩阵,有效地简化了白化实现过程,提高了白化性能,削弱了光照、姿态等噪声对表情识别的影响。该算法首先采用散度差矩阵求白化矩阵,由快速固定点算法(FASTICA)求解样本独立元,最终由最近邻准则实现表情识别。实验结果表明,提出的算法要优于传统的2DPCA及ICA算法,为表情识别提供了一条有效途径。As the traditional ICA does not consider the impornance of the independent components for classification and recognition.This paper proposed a method,which obtained scatter difference matrix by calculation of expression face matrix and neutral face matrix,abolished the total scatter matrix as a generation matrix which had been employed by 2DPCA.As a result,increased difference of between-class scatter,and weakened the noisy from the variety of face.Firstly this method whitened scatter difference matrix.Secondly,calculated independent components by FASTICA.Finally,used a nearest neighbor rule for expression recognition.Experiment result shows that correct recognition rate by the method is higher than that by 2DPCA and traditional ICA,and is valid for expression recognition.
关 键 词:散度差矩阵 白化散度差矩阵 独立元分析 最近邻准则 表情识别
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15