基于人工神经网络的超级马氏体不锈钢淬火力学性能预测  被引量:26

Prediction About Mechanical Properties of Quenched Supermartensitic Stainless Steel by ANN

在线阅读下载全文

作  者:刘环[1] 邹德宁[1] 闫东娜[1] 于军辉[1] 

机构地区:[1]西安建筑科技大学冶金工程学院,陕西西安710055

出  处:《热加工工艺》2011年第20期150-153,共4页Hot Working Technology

基  金:陕西省科学技术研究发展计划项目(2010K10-13);陕西省教育厅科研计划项目(2010JC10)

摘  要:利用人工神经网络(ANN)方法建立了超级马氏体不锈钢(SMSS)淬火工艺参数与力学性能的预测模型。模型输入单元为淬火温度、保温时间和冷却方式,输出单元为抗拉强度、屈服强度和伸长率;网络为3-9-3结构,动量因子为0.2,采用提前终止法与Levenberg-Marquardt算法相结合训练网络,以实验结果验证网络的可靠性。预测结果表明,抗拉强度、屈服强度和伸长率相对误差绝对值的最大值分别为2.2050%、1.4393%和8.4211%。该模型可为SMSS热处理工艺制定提供参考依据。The mechanical properties of quenched supermartensitic stainless steel(SMSS) were predicted using artificial neural network(ANN) model.Quenching temperature,aging time and type of cooling were employed as inputs while yield stress,tensile strength and elongation were taken as outputs.The method to combine early stopping algorithm with Levenberg-Marquardt algorithm was employed to train ANN model.Then the experiment results were used to check the model accuracy.The optimal network architecture is considered to be 3-9-3 with momentum factor 0.2.The results show that the biggest absolute relative errors(ARE) of yield stress,tensile strength and elongation are 2.2050%,1.4393% and 8.4211%,respectively.The model can be used as a reference for determining SMSS heat treatment technological parameters.

关 键 词:超级马氏体不锈钢 淬火工艺 力学性能 人工神经网络 

分 类 号:TG156.3[金属学及工艺—热处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象