检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵士伟[1] 卓力[1] 王素玉[1] 沈兰荪[1]
机构地区:[1]北京工业大学信号与信息处理研究室,北京100124
出 处:《电子学报》2011年第10期2348-2352,2396,共6页Acta Electronica Sinica
基 金:国家自然科学基金(No.61003289);北京市自然科学基金(No.4102008);人力资源与社会保障部留学归国人员科技活动优秀类资助;教育部留学归国人员科研启动基金
摘 要:本文提出了一种基于非支配邻域免疫算法(NNIA,Nondominated Neighbor Immune Algorithm)多目标优化的代价敏感决策树构建方法.将平均误分类代价和平均测试代价作为两个优化目标,然后利用NNIA对决策树进行优化,最终获取了一组Pareto最优的决策树。对多个测试集的测试结果表明,与C4.5算法和CSDB(Cost Sensitive DecisionTree)算法比较,本文方法不仅在平均误分类代价和平均测试代价两方面均可以取得优于两者的性能,而且获得的决策树具有更小的规模,泛化能力更强.A novel method of constructing the cost-sensitive decision trees based on multi-objective optimization is proposed in this paper.The average misclassification cost and the average test cost are treated as the two optimization objectives.NNIA(Nondominated Neighbor Immune Algorithm) is exploited to optimize the decision trees.And some Pareto decision trees are finally obtained.Experimental results show that,compared with the C4.5 algorithm and CSDB(Cost Sensitive Decision Tree) algorithm,the proposed method in this paper can not only outperform these two methods in terms of the two above objectives but also achieve smaller size of the decision trees and stronger generalization ability.
关 键 词:代价敏感 误分类代价 测试代价 多目标优化 决策树
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145