H-Bézier曲线的降多阶逼近  被引量:2

Multidegree Reduction Approximation of H-Bézier Curves

在线阅读下载全文

作  者:王燕[1] 檀结庆[1,2] 李志明[2] 白天[3] 

机构地区:[1]合肥工业大学计算机与信息学院,合肥230009 [2]合肥工业大学数学学院,合肥230009 [3]合肥工业大学计算机与信息学-院,合肥230009

出  处:《计算机辅助设计与图形学学报》2011年第11期1838-1843,共6页Journal of Computer-Aided Design & Computer Graphics

基  金:国家自然科学基金(60773043,61070227);教育部科学技术研究重大项目(309017)

摘  要:国内外对参数曲线降阶,尤其是对Bézier曲线降阶的研究已渐趋成熟,但尚缺少对超越曲线降阶的研究.为此以能精确表示指数曲线、悬链线等超越曲线的H-Bézier曲线为载体,运用H-Bézier曲线的升阶公式,结合广义逆矩阵理论给出了H-Bézier曲线一次降多阶的逼近方法;同时估计了降阶的误差界,并建立了与Bézier曲线降阶的关系.实验结果表明,采用该方法可取得较好的逼近效果,有效地丰富了H-Bézier曲线的理论体系.The research on the reduction of parametric curves, especially the Bezier curves,has come of age. But the research on the reduction of transcendental curves is rarely reported in literature. This paper studies H-Bezier curves that can exactly represent transcendental curves such as the exponential curves and the catenaries, and gives an approximation method of multidegree reduction of H-Bezier curves by making use of the elevation property of H-Bezier curves, and the theory of generalized inverse matrix. The degree reduction error bound is estimated, the relationship between the reduction of H-Bezier curves and that of Bezier curves is established, and numerical examples are given to show that the presented method has good approximation effects, and hence the theory of H-Bezier curves is enriched.

关 键 词:H-Bézier曲线 降阶 升阶 广义逆矩阵 

分 类 号:TP391.72[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象