检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:原凌云[1] 丁红玲[1] 周以军[1] 闫小兰 周玲[1]
机构地区:[1]安康市疾病预防控制中心,陕西安康725000
出 处:《中国热带医学》2011年第9期1051-1053,共3页China Tropical Medicine
摘 要:目的探讨应用ARIMA模型预测细菌性痢疾发病率的可行性,为细菌性痢疾的防治提供科学依据。方法应用SPSS13.0对安康市2005~2009年细菌性痢疾的月发病率进行ARIMA模型拟合,并用所得到的模型对2010年细菌性痢疾的月发病率进行预测,将预测值与实际值进行比较。结果 ARIMA(0,1,1)×(0,1,1)12模型很好地拟合了既往时间段上的发病率序列,对2010年月发病率的预测值符合实际发病率变动趋势。结论时间序列模型可以模拟细菌性痢疾发病率在时间序列上的变动趋势。Objective To explore the feasibility of autoregressive integrated moving average (ARIMA) model to predict the bacillary dysentery incidence and to provide basis forcontrol of bacillary dysentery. Methods SPSS13.0 software was used to construct the ARIMA mode based on the bacillary dysentery from 2005 to 2009 in Ankang City,Shanxi Province. Then the constructed model was used to predict the bacillary dysentery in 2010 and the prediction was compared with the actual incidence. Results Model of ARIMA (0,1,1)×(0,1,1 )12 exactly fitted the incidence of the previous months.The fit values of incidence in 2010 were consistent with the actual incidence. Conclusions The method of time series analysis can be used to fit exactly the changes of bacillary dysentery.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28