基于PCA改进的LS-SVM公路旅游客流量预测模型  被引量:9

Forecast Model of Highway Traveling Passenger Volume Based on LS-SVM Improved by PCA

在线阅读下载全文

作  者:张朝元[1] 王彭德[1] 陈丽[2] 

机构地区:[1]大理学院数学与计算机学院,云南大理671003 [2]大理学院工程学院,云南大理671003

出  处:《昆明理工大学学报(自然科学版)》2011年第5期38-42,共5页Journal of Kunming University of Science and Technology(Natural Science)

基  金:云南省教育厅科学研究基金项目(项目编号:2010C140)

摘  要:公路交通旅游客流量的影响因素众多,加大了预测模型输入变量的复杂性,降低了模型的运行速度和预测精确.首先,利用主成分分析对公路旅游客流量影响指标进行综合分析,得到主成分即输入变量,然后建立以主成分为输入变量,以客流量为输出变量的最小二乘支持向量机预测模型.通过实例验证和比较,展示了基于主成分分析改进的最小二乘支持向量机公路交通旅游客流量预测模型,具有较好的预测效果和较高的应用价值.The fact that many factors have influence on highway traveling passenger volume increases the com- plexity of the input variables and reduces running speed and precision of the prediction model. Firstly, the main components are gained through analyzing the impact indicators of highway traveling passenger volume using principal component analysis. Secondly, the forecast model of LS - SVM ( Least Squares Support Vector Machine) is established by taking main components as input variables and passenger volume as output variable. Through example confirmation and comparison, it is shown that the forecast model of highway traveling passenger volume based on LS -SVM improved by principal component analysis has good forecast effect and high application value.

关 键 词:主成分分析 最小二乘支持向量机 公路旅游客流量 预测模型 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] U491[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象