检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大理学院数学与计算机学院,云南大理671003 [2]大理学院工程学院,云南大理671003
出 处:《昆明理工大学学报(自然科学版)》2011年第5期38-42,共5页Journal of Kunming University of Science and Technology(Natural Science)
基 金:云南省教育厅科学研究基金项目(项目编号:2010C140)
摘 要:公路交通旅游客流量的影响因素众多,加大了预测模型输入变量的复杂性,降低了模型的运行速度和预测精确.首先,利用主成分分析对公路旅游客流量影响指标进行综合分析,得到主成分即输入变量,然后建立以主成分为输入变量,以客流量为输出变量的最小二乘支持向量机预测模型.通过实例验证和比较,展示了基于主成分分析改进的最小二乘支持向量机公路交通旅游客流量预测模型,具有较好的预测效果和较高的应用价值.The fact that many factors have influence on highway traveling passenger volume increases the com- plexity of the input variables and reduces running speed and precision of the prediction model. Firstly, the main components are gained through analyzing the impact indicators of highway traveling passenger volume using principal component analysis. Secondly, the forecast model of LS - SVM ( Least Squares Support Vector Machine) is established by taking main components as input variables and passenger volume as output variable. Through example confirmation and comparison, it is shown that the forecast model of highway traveling passenger volume based on LS -SVM improved by principal component analysis has good forecast effect and high application value.
关 键 词:主成分分析 最小二乘支持向量机 公路旅游客流量 预测模型
分 类 号:TP391[自动化与计算机技术—计算机应用技术] U491[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4