检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Camino BALBUENA Martin CERA Pedro GARCIA-VAZQUEZ Juan Carlos VALENZUELA
机构地区:[1]Departament de Matematica Aplicada III, Universitat Politecnica de Catalunya, C/ Jordi Girona 1-3 ( Edifici C2, Despatx 302), 08034 Barcelona, Spain [2]Departamento de Matemdtica Aplicada I, Universidad de SeviUa, EUIT Agrlcola, Ctra. Utrera, Kin. 1, 41013 Sevilla, Spain [3]Departamento de Matemdtica Aplicada I, Universidad de Sevilla, ETS Arquitectura, Avda. Reina Mercedes, 2, 41012 Sevilla, Spain [4]Departamento de Matemdticas, Universidad de Cddiz, EPS Algeciras, Avda. Ramdn Puyol, s/n, 11202 Algeciras, Spain
出 处:《Acta Mathematica Sinica,English Series》2011年第11期2085-2100,共16页数学学报(英文版)
摘 要:For a bipartite graph G on m and n vertices, respectively, in its vertices classes, and for integers s andt such that 2≤ s ≤ t, 0≤ m-s ≤ n-t, andre+n≤ 2s+t-1, we prove that if G has at least mn- (2(m - s) + n - t) edges then it contains a subdivision of the complete bipartite K(s,t) with s vertices in the m-class and t vertices in the n-class. Furthermore, we characterize the corresponding extremal bipartite graphs with mn- (2(m - s) + n - t + 1) edges for this topological Turan type problem.For a bipartite graph G on m and n vertices, respectively, in its vertices classes, and for integers s andt such that 2≤ s ≤ t, 0≤ m-s ≤ n-t, andre+n≤ 2s+t-1, we prove that if G has at least mn- (2(m - s) + n - t) edges then it contains a subdivision of the complete bipartite K(s,t) with s vertices in the m-class and t vertices in the n-class. Furthermore, we characterize the corresponding extremal bipartite graphs with mn- (2(m - s) + n - t + 1) edges for this topological Turan type problem.
关 键 词:Bipartite graphs extremal graph theory topological minor
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49