Topological Minors in Bipartite Graphs  

Topological Minors in Bipartite Graphs

在线阅读下载全文

作  者:Camino BALBUENA Martin CERA Pedro GARCIA-VAZQUEZ Juan Carlos VALENZUELA 

机构地区:[1]Departament de Matematica Aplicada III, Universitat Politecnica de Catalunya, C/ Jordi Girona 1-3 ( Edifici C2, Despatx 302), 08034 Barcelona, Spain [2]Departamento de Matemdtica Aplicada I, Universidad de SeviUa, EUIT Agrlcola, Ctra. Utrera, Kin. 1, 41013 Sevilla, Spain [3]Departamento de Matemdtica Aplicada I, Universidad de Sevilla, ETS Arquitectura, Avda. Reina Mercedes, 2, 41012 Sevilla, Spain [4]Departamento de Matemdticas, Universidad de Cddiz, EPS Algeciras, Avda. Ramdn Puyol, s/n, 11202 Algeciras, Spain

出  处:《Acta Mathematica Sinica,English Series》2011年第11期2085-2100,共16页数学学报(英文版)

摘  要:For a bipartite graph G on m and n vertices, respectively, in its vertices classes, and for integers s andt such that 2≤ s ≤ t, 0≤ m-s ≤ n-t, andre+n≤ 2s+t-1, we prove that if G has at least mn- (2(m - s) + n - t) edges then it contains a subdivision of the complete bipartite K(s,t) with s vertices in the m-class and t vertices in the n-class. Furthermore, we characterize the corresponding extremal bipartite graphs with mn- (2(m - s) + n - t + 1) edges for this topological Turan type problem.For a bipartite graph G on m and n vertices, respectively, in its vertices classes, and for integers s andt such that 2≤ s ≤ t, 0≤ m-s ≤ n-t, andre+n≤ 2s+t-1, we prove that if G has at least mn- (2(m - s) + n - t) edges then it contains a subdivision of the complete bipartite K(s,t) with s vertices in the m-class and t vertices in the n-class. Furthermore, we characterize the corresponding extremal bipartite graphs with mn- (2(m - s) + n - t + 1) edges for this topological Turan type problem.

关 键 词:Bipartite graphs extremal graph theory topological minor 

分 类 号:O157.5[理学—数学] TP393[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象