检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ji Ming GUO Xiao Li WU Jiong Ming ZHANG Kun Fu FANG
机构地区:[1]Department of Applied Mathematics, China University of Petroleum, Dongying 257061, P. R. China [2]Faculty of Science, Huzhou Teachers College, Huzhou 313000, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2011年第11期2259-2268,共10页数学学报(英文版)
基 金:Supported by National Natural Science Foundation of China (Grant No. 10871204) and the Fundamental Research Funds for the Central Universities (Grant No. 09CX04003A)
摘 要:This paper presents some bounds on the number of Laplacian eigenvalues contained in various subintervals of [0, n] by using the matching number and edge covering number for G, and asserts that for a connected graph the Laplacian eigenvalue 1 appears with certain multiplicity. Furthermore, as an application of our result (Theorem 13), Grone and Merris' conjecture [The Laplacian spectrum of graph II. SIAM J. Discrete Math., 7, 221-229 (1994)] is partially proved.This paper presents some bounds on the number of Laplacian eigenvalues contained in various subintervals of [0, n] by using the matching number and edge covering number for G, and asserts that for a connected graph the Laplacian eigenvalue 1 appears with certain multiplicity. Furthermore, as an application of our result (Theorem 13), Grone and Merris' conjecture [The Laplacian spectrum of graph II. SIAM J. Discrete Math., 7, 221-229 (1994)] is partially proved.
关 键 词:Laplacian eigenvalue matching number edge covering number PENDANT NEIGHBOR
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15