建立错畸形数字化诊断模板及标志点自动识别研究  被引量:2

Establishment of Digital Diagnostic Templates for Malocclusion and Research of Landmark Automatic Identification

在线阅读下载全文

作  者:韩冰[1] 许天民[1] 林久祥[1] 

机构地区:[1]北京大学口腔医学院.口腔医院正畸科,北京100081

出  处:《北京大学学报(自然科学版)》2011年第6期983-989,共7页Acta Scientiarum Naturalium Universitatis Pekinensis

基  金:卫生部行业科研专项基金(200802056);高等学校博士学科点专项科研基金(20090001120123)资助

摘  要:为了给计算机自动识别诊断提供模板参考并初步尝试计算机自动识别,将2249例错畸形样本进行聚类和判别分析,以60个标志点的坐标值作为分类变量,形成21个数字化诊断模板,总判别准确率和交互验证准确率分别达到89.1%和85.0%。采用判别方程或者模板特征对新样本进行分类,并为正畸临床诊断、疗效评价和预测提供参考。采用模板匹配的方法对10例新样本的23个标志点进行初步计算机自动识别研究,其中11个标志点的识别误差小于2 mm,能够满足临床应用要求。The purpose of this research is to provide digital diagnostic templates as references for automatic landmark identification and attempt to realize landmark automatic identification by computers. 2249 pre-treatment X-ray films of malocclusion patients were divided into 21 subtypes according to the coordinates of 60 landmarks by cluster and discriminate analysis. The total differentiate rate and leave-one-out differentiate rate were 89.1% and 85.0% respectively. 21 digital diagnostic templates were established. A new case could be classified into one subtype by discriminate functions or the characters of templates and the digital diagnostic templates could be used for diagnosis, evaluation and prognosis in orthodontic clinic. 23 landmarks of 10 new samples were identified automatically by computer using templates. The mean errors of 11 landmarks were below 2 ram, which could reach the clinical demand.

关 键 词:数字化诊断模板 聚类和判别分析 X线头影测量技术 自动识别 

分 类 号:R783.5[医药卫生—口腔医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象