检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学自动化学院控制与信息研究所,陕西西安710072
出 处:《控制理论与应用》2011年第10期1391-1398,共8页Control Theory & Applications
基 金:国家自然科学基金重点资助项目(60634030);国家自然科学基金资助项目(60702066);航天科技创新基金资助项目(CASC0214)
摘 要:无线传感器网络中节点协同自组织主要涵盖传感器管理和状态估计,也就是如何选择传感器节点、设置传感器参数并估计被监测系统的状态,因此协同自组织为决策与估计的联合优化.本文提出了一种自适应动态协同自组织算法,以量测所提供的信息量和节点自身的剩余能量做为节点选择的综合指标,根据设定的感知精度,自适应地选择参与感知任务的节点集合,在信息滤波的融合框架下完成状态的分布式估计.相比信息驱动传感器查询(information-driven sensor querying,IDSQ),算法具有精度可调、强鲁棒,同时尽可能地延长了网络的生命周期.以目标跟踪为应用背景,其仿真结果表明:以跟踪精度、失跟率和网络生命周期作为评价指标,该算法优于IDSQ.Collaborative self-organization of sensor nodes in wireless sensor networks involves sensor management and state estimation, which include the selection of sensor nodes, the configuration of sensors, and the estimation of the states of the inspected system. Thus, this collaborative self-organization performs the joint optimization of decision and estimation. We propose an adaptive dynamic collaborative self-organization algorithm, in which the sensors are selected based on the composite index of the measured information and the residual energy of the sensor node. Given the desired accuracy by the end user, the optimal set of sensors involved in the sensing task is chosen adaptively and instantly. Then, the measured information from selected sensors is fused under the frame of information filter. Compared with the method of information-driven sensor querying(IDSQ), this technique is more advantageous in the adjustable accuracy, the robustness and the network lifetime. When this algorithm is applied to the target tracking, the simulation results validate the superiority of this algorithm to IDSQ in tracking accuracy, the percentage of missing tracking and the lifetime of the network.
分 类 号:TN929.5[电子电信—通信与信息系统] TP212.9[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171