检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱陈平[1] 张永梅[1] 刘小廷[1] 王荣芳[1] 王新光[1]
机构地区:[1]南京航空航天大学应用物理系,南京210016
出 处:《上海理工大学学报》2011年第5期425-432,共8页Journal of University of Shanghai For Science and Technology
摘 要:大多数实际存在的复杂网络是稀疏的,即网络平均度远小于节点数:k—N.到目前为止,关于这一性质的起源,它对于网络功能与网络上动力学过程的影响,可能的应用价值的研究还都远远不足.实际上,稀疏性与网络的其它拓扑性质密切相关.近几年来,人们对复杂网络稀疏性的相关效应从理论和实验两个方面都做了深入的研究,但是,还缺乏原理性的探讨.从统计物理的视角出发,稀疏性应当被看作复杂系统中个体之间相互作用的涌现性质,而不应当是现有模型中先验的前提.本文拟就复杂网络稀疏性的统计物理研究作一综述.Most practically existing complex networks are sparsely connected, namely, the average degrees of them are much smaller than their total numbers of nodes: k^- 〈〈N. Up till now, the research on the origin of this property, its effects on functions of networks and dynamic processes on networks,and its possible applications have been still far less than adequate. Actually, sparsity is closely related with other topological properties. In recent years, much progress has been made on sparseness of complex networks from both theoretic and experimental aspects. However, principle conclusion is still anticipated. From the view point of statistical physics, it is believed that the sparsity of networks should be accounted as an emergent property of interactions between individuals in complex systems, instead of e priori prerequisite for existing models. In the present paper, we attempt to review previous investigations with statistical physics on the sparseness of complex networks.
分 类 号:N94[自然科学总论—系统科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175