检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Key Laboratory of Modern Acoustics of Ministry of Education,Institute of Acoustics,Nanjing University [2]Institute of Biomedical and Health Engineering,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences [3]Department of Bioengineering,Imperial College London
出 处:《Chinese Physics B》2011年第11期359-364,共6页中国物理B(英文版)
基 金:supported by the National Basic Research Program of China(Grant No.2011CB707900);the National Natural Science Foundation of China(Grant Nos.10974093,11011130201,and 10904094);the Fundamental Research Funds for the Central Universities of China(Grant Nos.1103020402,1116020410,and 1112020401);the Prior Academic Program Development of Jiangsu Higher Education Institutions,China;the State key Laboratory of Acoustics of Ministry of Education,China
摘 要:Secondary radiation force can be an attractive force causing aggregates of encapsulated microbubbles in ultrasonic molecular imaging. The influence of the secondary radiation force on aggregation between two coated bubbles is investigated in this study. Numerical calculations are performed based on four simultaneous differential equations of radial and translational motions. Results show that the secondary force can change from attraction to repulsion during approach, and stable microbubble pairs can be formed in the vicinity of resonant regions; the possibility of microbubble aggregations can be reduced by using low exciting amplitude, ultrasonic frequencies deviating from the resonant frequencies or microbubbles with small compressibility.Secondary radiation force can be an attractive force causing aggregates of encapsulated microbubbles in ultrasonic molecular imaging. The influence of the secondary radiation force on aggregation between two coated bubbles is investigated in this study. Numerical calculations are performed based on four simultaneous differential equations of radial and translational motions. Results show that the secondary force can change from attraction to repulsion during approach, and stable microbubble pairs can be formed in the vicinity of resonant regions; the possibility of microbubble aggregations can be reduced by using low exciting amplitude, ultrasonic frequencies deviating from the resonant frequencies or microbubbles with small compressibility.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70