检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ya Zhou HAN Peng Cheng NIU Shu Tao ZHANG
机构地区:[1]Department of Mathematics, College of Science, China diliang University, Hangzhou 310018, P. R. China [2]Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, P. R. China [3]Department of Mathematics, College of Science, China Jiliang University, Hangzhou 310018, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2011年第12期2493-2506,共14页数学学报(英文版)
基 金:Supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. Y6110118), National Natural Science Foundation of China (Grant No. 10871157) and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200806990032)
摘 要:In this paper, sufficient and necessary conditions for the first order interpolation inequalities with weights on the Heisenberg group are given. The necessity is discussed by polar coordinates changes of the Heisenberg group. Establishing a class of Hardy type inequalities via a new representation formula for functions and Hardy-Sobolev type inequalities by interpolation, we derive the sufficiency. Finally, sharp constants for Hardy type inequalities are determined.In this paper, sufficient and necessary conditions for the first order interpolation inequalities with weights on the Heisenberg group are given. The necessity is discussed by polar coordinates changes of the Heisenberg group. Establishing a class of Hardy type inequalities via a new representation formula for functions and Hardy-Sobolev type inequalities by interpolation, we derive the sufficiency. Finally, sharp constants for Hardy type inequalities are determined.
关 键 词:Interpolation inequality Hardy-Sobolev type inequality Hardy type inequality Heisenberg group
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117