检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Science China(Technological Sciences)》2008年第S1期155-164,共10页中国科学(技术科学英文版)
基 金:the National Hi-Tech Research and Development Program of China (Grand No. 2006AA12Z217);the National Natural Science Foundation of China (Grant No. 60703066)
摘 要:Abnormal events in earth science have great influence on both the natural envi-ronment and the human society. Finding association patterns among these events has great significance. Because data in earth science has characteristics of mass,high dimension,spatial autocorrelation and time delay,existing mining technolo-gies cannot be directly used on it. We propose a RSNN (range-based searching nearest neighbors) spatial clustering algorithm to reduce the data size and auto-correlation. Based on the clustered data,we propose a GEAM (geographic episode association pattern mining) algorithm which can deal with events time lags and find interesting patterns with specific constraints,to mine the association patterns. We carried out experiments on global climate datasets and found many interesting association patterns. Some of the patterns are coincident with known knowledge in climate science,which indicates the correctness and feasibilities of our methods,and the others are unknown to us before,which will give new information to this research field.Abnormal events in earth science have great influence on both the natural envi-ronment and the human society. Finding association patterns among these events has great significance. Because data in earth science has characteristics of mass,high dimension,spatial autocorrelation and time delay,existing mining technolo-gies cannot be directly used on it. We propose a RSNN (range-based searching nearest neighbors) spatial clustering algorithm to reduce the data size and auto-correlation. Based on the clustered data,we propose a GEAM (geographic episode association pattern mining) algorithm which can deal with events time lags and find interesting patterns with specific constraints,to mine the association patterns. We carried out experiments on global climate datasets and found many interesting association patterns. Some of the patterns are coincident with known knowledge in climate science,which indicates the correctness and feasibilities of our methods,and the others are unknown to us before,which will give new information to this research field.
关 键 词:ABNORMAL EVENTS ASSOCIATION patterns high DIMENSIONAL clustering earth science data
分 类 号:P208[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15