检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东省科技干部学院计算机与电子工程系,广州510640 [2]华南理工大学电子与通信工程系,广州510641
出 处:《中国图象图形学报》2003年第1期87-93,共7页Journal of Image and Graphics
摘 要:针对 Kosko提出的最大最小模糊联想记忆网络存在的问题 ,通过对这种网络连接权学习规则的改进 ,给出了另一种权重学习规则 ,即把 Kosko的前馈模糊联想记忆模型发展成为模糊双向联想记忆模型 ,并由此给出了模糊快速增强学习算法 ,该算法能存储任意给定的多值训练模式对集 .其中对于存储二值模式对集 ,由于其连接权值取值 0或 1,因而该算法易于硬件电路和光学实现 .实验结果表明 ,模糊快速增强学习算法是行之有效的 .This paper gives a new learning rule about the formation of weights for two-layer max-min feedforward fuzzy associative memory (FAM) network proposed by Kosko . Based on the new rule,The feedforward FAM model is developed into a fuzzy bidirectional associative memory (BAM) model,and a fuzzy quick augmentation algorithm is also proposed,Its stability and tolerance for the BAM model are also analyzed. From the analysis, an interesting result which can store an arbitrary given multi-value patterns is obtained. When used to store binary values, The weights for BAM model take binary too, 0 or 1.So it is suitable for the VLSI and optical implementation. In order to make a comparision, binary based sample patterns have adoped. A larger number of simulation results show the advantages of a less number of weighted value,or the simple implementation, by comparing with the existing learning algorithm,such as binary based Hoperfield dummy augmentation and MBDS augmentation algorithms. On the other hand, the fuzzy quick augmentation algirithm has the merit of the simpler computation and faster convergence.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222