Modular Vector Invariants of Cyclic Groups Z_2  

Modular Vector Invariants of Cyclic Groups Z_2

在线阅读下载全文

作  者:Ji Zhu NAN Hui Fang ZHAO 

机构地区:[1]School of Mathematical Sciences,Dalian University of Technology,Liaoning 116024,P.R.China

出  处:《Journal of Mathematical Research and Exposition》2011年第6期997-1002,共6页数学研究与评论(英文版)

基  金:Supported by the National Natural Science Foundation of China (Grant No.10771023)

摘  要:Let G be the finite cyclic group Z_2 and V be a vector space of dimension 2n with basis x_1,...,x_n,y_1,...,y_n over the field F with characteristic 2.If σ denotes a generator of G,we may assume that σ(x_i)= ayi,σ(y_i)= a~-1x_i,where a ∈ F.In this paper,we describe the explicit generator of the ring of modular vector invariants of F[V]~G.We prove that F[V]~G = F[l_i = x_i + ay_i,q_i = x_iy_i,1 ≤ i ≤ n,M_I = X_I + a~-I-Y_I],where I∈An = {1,2,...,n},2 ≤-I-≤ n.Let G be the finite cyclic group Z_2 and V be a vector space of dimension 2n with basis x_1,...,x_n,y_1,...,y_n over the field F with characteristic 2.If σ denotes a generator of G,we may assume that σ(x_i)= ayi,σ(y_i)= a~-1x_i,where a ∈ F.In this paper,we describe the explicit generator of the ring of modular vector invariants of F[V]~G.We prove that F[V]~G = F[l_i = x_i + ay_i,q_i = x_iy_i,1 ≤ i ≤ n,M_I = X_I + a~-I-Y_I],where I∈An = {1,2,...,n},2 ≤-I-≤ n.

关 键 词:finite cyclic group invariant ring modular vector invariants. 

分 类 号:O152.1[理学—数学] P208[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象