Regulating role of acetylcholine and its antagonists in inward rectified K^+ channels from guard cell protoplasts of Vicia faba  被引量:1

Regulating role of acetylcholine and its antagonists in inward rectified K^+ channels from guard cell protoplasts of Vicia faba

在线阅读下载全文

作  者:冷强 花宝光 郭玉海 娄成后 

出  处:《Science China(Life Sciences)》2000年第2期217-224,共8页中国科学(生命科学英文版)

摘  要:The inward rectified potassium current of Vicia faba guard cell protoplasts treated with acetylcholine (ACh) or the antagonists of its receptors were recorded by employing the patch clamp technique. The results show that ACh at lower concentrations increases the inward K+ current, in contrast, ACh at higher concentrations inhibits it. Treated with d-Tubocurarine (d-Tub), an antagonist of the nicotine ACh receptor (nAChR) inhibits the inward K+ current by 30%. Treated with atropine (Atr), an antagonist of the muscarine (Mus) ACh receptor (mAChR) also inhibits it by 36%. However, if guard cell protoplasts are treated with d-Tub and Atr together, the inward K+ current is inhibited by 60%-75%. Tetraethylammonium chloride (TEA), a strong inhibitor of K+ channels has no effect on the inward K+ current regulated by ACh, suggesting that there are inward K+ channels modulated by AChRs on the membrane of the guard cell protoplasts. These data demonstrate an ACh-regulated mechanism for stomatal movement.The inward rectified potassium current of Vicia faba guard cell protoplasts treated with acetylcholine (ACh) or the antagonists of its receptors were recorded by employing the patch clamp technique. The results show that ACh at lower concentrations increases the inward K+ current, in contrast, ACh at higher concentrations inhibits it. Treated with d-Tubocurarine (d-Tub), an antagonist of the nicotine ACh receptor (nAChR) inhibits the inward K+ current by 30%. Treated with atropine (Atr), an antagonist of the muscarine (Mus) ACh receptor (mAChR) also inhibits it by 36%. However, if guard cell protoplasts are treated with d-Tub and Atr together, the inward K+ current is inhibited by 60%-75%. Tetraethylammonium chloride (TEA), a strong inhibitor of K+ channels has no effect on the inward K+ current regulated by ACh, suggesting that there are inward K+ channels modulated by AChRs on the membrane of the guard cell protoplasts. These data demonstrate an ACh-regulated mechanism for stomatal movement.

关 键 词:ACETYLCHOLINE ACETYLCHOLINE receptor INWARD K+ current GUARD cell. 

分 类 号:Q945[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象