Weighted Approximation by Hight Order Interpolation in L p w Space   

高阶插值在L_w^p空间中的带权逼近(英文)

在线阅读下载全文

作  者:盛保怀[1] 李宏涛[2] 尚增科[2] 

机构地区:[1]西安电子科技大学应用数学系 [2]宝鸡文理学院数学系

出  处:《Journal of Mathematical Research with Applications》1999年第S1期26-31,共6页数学研究及应用(英文版)

摘  要:The paper gives a new way of constructing Hermite Fejer and Hermite interpolatory polynomials with the nodes of the roots of first kind of Chebyshev polynomials and gives the approximation order of these two kinds of operators. The approximation orders are described with the best rate of approximation of f by polynomials of degree N=(q+1)n 1 in L p w spaces.The paper gives a new way of constructing Hermite Fejer and Hermite interpolatory polynomials with the nodes of the roots of first kind of Chebyshev polynomials and gives the approximation order of these two kinds of operators. The approximation orders are described with the best rate of approximation of f by polynomials of degree N=(q+1)n 1 in L p w spaces.

关 键 词:Hermite  Fejer interpolation Hermite interpolation approximation order. 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象