流体动量方程在曲线坐标系中的守恒型(上)  被引量:1

THE CONSERVATION FORMS OF FLUID MOMENTUM EQUATION IN CURVILINEAR COORDINATE SYSTEMS (Ⅰ)

在线阅读下载全文

作  者:陈宏冀[1] 

机构地区:[1]中国科学院工程热物理研究所,北京100080

出  处:《应用基础与工程科学学报》1994年第Z1期244-255,共12页Journal of Basic Science and Engineering

摘  要:针对长期未能解决的问题,本文提出了一种新的、物理概念清楚的、严格的推导守恒型流体动量方程的基本方法;推出了多种曲线坐标、多种速度分量情况下的一系列真正保持守恒性的强守恒型微分动量方程;指出了某些惯用的弱守恒型方程未能使守恒性得到保持。Being aimed at the problem which has not been completely solved for a long time, a new, distinct-physical-concepted, rigorous basic method to deduce the conservation form e-quations of fluid momentum is presented in this paper ; a series of realy-conservation-preserv-ing differential momentum equations which are in strong conservation forms are deduced for the cases of various curvilinear coordinates and various velocity components; and the fact that some usually used weak conservation form equations do not preserve the conservation is pointed out.

关 键 词:计算流体力学 守恒型方程 动量方程 曲线坐标系 强守恒型 

分 类 号:O351[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象