检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]贵州大学计算机科学与信息学院,贵州贵阳550025
出 处:《贵州大学学报(自然科学版)》2011年第5期87-91,103,共6页Journal of Guizhou University:Natural Sciences
基 金:贵州省2009年省级信息化专项资金项目(编号:0958)
摘 要:由于交通流量具有非线性和强干扰性的特征,在不同的时频域空间具有不同的特性;本文首先应用小波分析的方法,将含有综合信息的一组原始交通流信号分解为多组特征不同的时间序列信号,再利用ARIMA模型良好的线性拟合能力,将经过小波分析的时间信号通过ARIMA模型进行处理。利用Matlab和SPSS,对实测交通流数据进行了验证分析,实验表明,小波分析结合ARIMA模型预测的方法能有效的降低预测误差,具有很高的可行性。As the traffic flow has the features of nonlinear and strong interference, it has different characteristics in different time-frequency spaces. Firstly, the wavelet analysis method was used to decomposes a group of original traffic flow signals containing summarized information into series of time sequence signals that have different characteristics, then good linear fitting ability of the ARIMA model was utilized to process the wavelet analysis time signal through the ARIMA model. Using matlab and SPSS, the measured traffic flow data were analyzed and verified. Experiment results show that the way of combining the wavelet analysis with ARIMA model can reduce the prediction error effectively, and improve the forecasting accuracy by about 80%, this way has high feasibility.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145