基于多尺度方向特征的快速鲁棒人体检测算法  被引量:6

Fast and Robust Pedestrian Detection Algorithm with Multi-Scale Orientation Features

在线阅读下载全文

作  者:叶齐祥[1] 焦建彬[1] 蒋树强[2] 

机构地区:[1]中国科学院研究生院,北京100049 [2]中国科学院计算技术研究所,北京100190

出  处:《软件学报》2011年第12期3004-3014,共11页Journal of Software

基  金:国家自然科学基金(61039003;60872143);国家重点基础研究发展计划(973)(2011CB706900;2010CB731800)

摘  要:提出一种多尺度方向(multi-scale orientation,简称MSO)特征描述子用于静态图片中的人体目标检测.MSO特征由随机采样的图像方块组成,包含了粗特征集合与精特征集合.其中,粗特征是图像块的方向,而精特征由Gabor小波幅值响应竞争获得.对于两种特征,分别采用贪心算法进行选择,并使用级联Adaboost算法及SVM训练检测模型.基于粗特征的Adaboost分类器能够保证高的检测速度,而基于精特征的SVM分类器则保证了检测精度.另外,通过MSO特征块的平移,使得所提算法能够检测多视角的人体.通过对于MSO特征块的装配,使得算法能够检测人群中相互遮挡的人体目标.在INRIA公共测试集合及SDL多视角测试集合上的实验结果表明,算法具有对视角与遮挡的鲁棒性和较高的检测速度.The multi-scale orientation (MSO) features for pedestrian detection in still images are put forwarded in this paper. Extracted on randomly sampled square image blocks (units), MSO features are made up of coarse and fine features, which are calculated with a unit gradient and the Gabor wavelet magnitudes respectively. Greedy methods are employed respectively to select the features. Furthermore, the selected features are inputted into a cascade classifier with Adaboost and SVM for classification. In addition, the spatial location of MSO units can be shifted, are used to the handle multi-view problem and assembled; therefore, the occluded features are completed with average features of training positives, given an occlusion model, which enable the proposed approach to work in crowd scenes. Experimental results on INRIA testset and SDL multi-view testset report the state-of-arts results on INRIA include it is 12.4 times the faster than SVM+HOG method.

关 键 词:目标检测 人体检测 多视角 遮挡 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象