机构地区:[1]Department of Mechanics, Zhejiang University, Hangzhou 310027, China [2]National Engineering Laborat, ory for System Integration of High-Speed Train (South), CSR Qingdao Sifang Co., Ltd., Qingdao 266111, China
出 处:《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》2011年第12期964-970,共7页浙江大学学报(英文版)A辑(应用物理与工程)
基 金:Project(No.2009BAG12A01-C03) supported by the National Key Technology R&D Program of China
摘 要:With the development of high-speed train,it is considerably concerned about the aerodynamic characteristics and operation safety issues of the high-speed train under extreme weather conditions.The aerodynamic performance of a high-speed train under heavy rain and strong crosswind conditions are modeled using the Eulerian two-phase model in this paper.The impact of heavy rainfall on train aerodynamics is investigated,coupling heavy rain and a strong crosswind.Results show that the lift force,side force,and rolling moment of the train increase significantly with wind speed up to 40 m/s under a rainfall rate of 60 mm/h.when considering the rain and wind conditions.The increases of the lift force,side force,and rolling moment may deteriorate the train operating safety and cause the train to overturn.A quasi-static stability analysis based on the moment balance is used to determine the limit safety speed of a train under different rain and wind levels.The results can provide a frame of reference for the train safe operation under strong rain and crosswind conditions.With the development of high-speed train, it is considerably concerned about the aerodynamic characteristics and operation safety issues of the high-speed train under extreme weather conditions. The aerodynamic performance of a high-speed train under heavy rain and strong crosswind conditions are modeled using the Eulerian two-phase model in this paper. The impact of heavy rainfall on train aerodynamics is investigated, coupling heavy rain and a strong crosswind. Results show that the lift force, side force, and rolling moment of the train increase significantly with wind speed up to 40 m/s under a rainfall rate of 60 mm/h. when considering the rain and wind conditions. The increases of the lift force, side force, and rolling moment may deteriorate the train operating safety and cause the train to overturn. A quasi-static stability analysis based on the moment balance is used to determine the limit safety speed of a train under different rain and wind levels. The results can provide a frame of reference for the train safe operation under strong rain and crosswind conditions.
关 键 词:High-speed train Aerodynamic characteristics Multiphase flow RAIN CROSSWIND OVERTURNING
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...