检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《科学技术与工程》2011年第34期8486-8489,共4页Science Technology and Engineering
摘 要:在复杂的语音获取应用环境中,麦克风阵列接收的信号难免会产生方向、幅度和相位的模糊问题。提出了一种基于声透镜粒子群算法的自适应噪声对消算法。通过声透镜波束形成技术采集语音信号,将粒子群算法应用于自适应噪声对消中解决获取信息模糊问题。Matlab计算机仿真结果表明本算法与传统自适应噪声抵消算法相比具有更好的噪声抵消能力和性能,信噪比大大提高,且可以有效解决语音数据的模糊问题。In the complex application environment of fuzzy sound tracking, the source direction, amplitude and phase fuzzy problems were inevitably existed in signal processing from microphone arrays, so a kind of adaptive noise cancellation algorithm based on acoustic lenses particle swarm algorithm was proposed. Speech signal was collected through the acoustic lenses beam-forming technology, particle swarm algorithm was applied.in adaptive noise cancellation to solve the fuzzy problems. Matlab simulation results show that this algorithm has better denoising ability and performance than the traditional method, SNR is also greatly improved, and the fuzzy problems of speech data can be solved effectively.
关 键 词:粒子群算法 声透镜 波束形成 模糊信息处理 自适应噪声对消
分 类 号:TN912.202[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145