检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张明光[1] 赵金亮[1] 王维洲[2] 张彦凯[1] 路染妮[1] 李正元[2]
机构地区:[1]兰州理工大学电气工程与信息工程学院,甘肃兰州730050 [2]甘肃电力科学研究院,甘肃兰州730050
出 处:《电气自动化》2011年第6期57-60,共4页Electrical Automation
摘 要:配电网重构可以降低线损,均衡负荷,提高电压质量和增加配电网可靠性。主要在降低线损、提高电压质量和提高寻优效率方面,采用了自适应遗传算法和蚁群算法融合的方法。对遗传算法的交叉因子和变异因子进行了自适应控制,也不再人为规定迭代的最大代数,而是引入了染色体相似度和种群相似度的概念,使遗传算法的终止条件更加合理。自适应遗传算法和蚁群算法融合算法初期采用遗传算法利用快速全局搜索能力强求得初始解,利用这些解生成蚁群算法的信息素分布,后期利用蚁群算法的正反馈机制求得精确解。进而形成时间效率和精确解效率兼得的一种新的智能算法。最后通过对IEEE69节点系统算例的仿真,取得了较好的效果,证明了算法的有效性、可行性。The economics, power quality and reliability of distribution system operation can be improved through the combinative optimum of the switches. The article is based on the combination of adaptive genetic algorithm and ant colony algorithm to reduce the line loss, improve system voltage and optimize speed. The end adaptive genetic algorithm and is based on the concept of Chromosome similarity, Population similarity and the adaptive adjustment to the crossover rate and mutation rate, not based on the set maximum iteration, the combination of adaptive genetic algorithm and ant colony algorithm is based on the rapid global search capability of genetic algorithm and convergence of positive feedback mechanism of ant colony algorithm, beginning use adaptive genetic algorithm to produce pheromone distribution, then use positive feedback mechanism of ant colony algorithm to seek exact Solutions. Thus time efficiency of the combination of both algorithm is superior to the ant colony algorithm, Finding exact solutions in the efficiency of genetic algorithms better than that. As far as a new intelligent algorithm be concerned, time and efficiency have it both ways. At last, the simulation result of the IEEE69 note system verified the efficient and feasible of the algorithm.
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28