检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《生物医学工程学杂志》2011年第6期1075-1079,共5页Journal of Biomedical Engineering
基 金:国家自然科学基金资助项目(30970764)
摘 要:瞳孔自动跟踪系统是全自动视野计的关键组成部分。本文利用积分图计算特征值快速的优点,在训练Adaboost强分类器的基础上研究了训练级数与分类器总误检率的关系,引入逐层放大检测窗口的检测策略,提出了一种多层级联的层叠分类器用于眼睛定位与跟踪。该算法的应用在保留了传统强分类器高检测率的基础上,明显降低了对目标图像的误检率。同时文章阐述了算法的主要实现函数并设计了下颚托架系统的运动控制方案。The pupil auto-tracking system is a key component of the full-automatic perimeter. Taking the advantage of integral image in counting characteristic value rapidly, we studied the relationship between training stages and total error detection rate based on the training of Adaboost strong classifier. Besides, a testing strategy of amplification detection window was introduced, and a multi-stage cascaded eye classifier for eye detection was proposed finally. It kept the same detection rate as the commonly trained strong classifier with a much lower error detection rate. In the meantime, the present article explaines the main arithmetic implement functions, as well as designs the motion control program for the jaw bracket system.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80