空间环境下惯性展开机构动态性能可靠性分析  

Dynamical Reliability of Inertia Expanding Mechanism in Space Environment

在线阅读下载全文

作  者:林志树[1] 于霖冲[1] 

机构地区:[1]厦门理工学院机械工程系,福建厦门361024

出  处:《厦门理工学院学报》2011年第4期23-26,共4页Journal of Xiamen University of Technology

摘  要:提出惯性展开机构运动参数动态可靠性分析方法,建立了惯性展开机构运动参数动态可靠性分析模型.将驱动力(矩)、摩擦和阻尼力(矩)等作为随机变量,应用蒙特卡罗方法,取得动态参数样本,再利用人工神经网络方法,用随机抽取的样本对网络进行训练,统计网络输出的动态参数分布,得到惯性展开机构动态可靠度.空间站惯性展开机构动态可靠度计算实例表明,该方法简单实用,计算成本低.Methodology of inertia expanding mechanism kinematical parameters dynamical reliability analysis was presented. A general model of kinematical parameters dynamical reliability was introduced for inertia expanding mechanism. Stochastic variables including driven forces, torques, frictions and damps were considered basically. First, Monte Carlo(MC) method was applied to generate stochastic variables and dynamical responds of mechanism. Then, the application of Artificial Neural Network(ANN) was motivated by the approximate concepts inherent in reliability analysis and time consuming repetition required for MC. Finally, statistical distribution of kinematical parameters was yielded from the outputs of ANN. As an example, a space station inertia expanding mechanism model was employed to test this method. The results proved that this method could be used to account for the complicated dynamical reliability analysis at a reasonable computational cost.

关 键 词:展开机构 空间环境 惯性 模型 人工神经网络 可靠性理论 

分 类 号:V414.1[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象