分区域多目标进化算法在协同车辆路径问题中的应用  被引量:5

The Application of Multi-objective Evolutionary Algorithm in Collaborative Vehicle Routing

在线阅读下载全文

作  者:谢桂芩[1] 涂井先[1] 

机构地区:[1]广东工业大学应用数学学院,广东广州510520

出  处:《广东工业大学学报》2011年第4期38-44,共7页Journal of Guangdong University of Technology

基  金:广东省自然科学基金资助项目(10251009001000002)

摘  要:在以原有的车辆配送总费用最小化为目标的基础上,兼顾顾客的满意度目标,建立带有时间窗的多物流中心协同配送的车辆路径多目标优化问题的数学模型.对建立的多目标优化问题,采用分区域多目标进化算法思想,构造了利于产生可行解的编码方式,从而提高算法的运行效率.通过算例验证了建立的模型能有效地解决协同物流配送车辆路径问题.To minimize the total cost of vehicle transport and to satisfy customers, it proposed a new mathematical model for multi-objective optimization of Multi-Depot collaborative vehicle routing with time windows in logistics. For the sake of this multi-objective optimization, a multi-objective evolutionary algorithm, based on decomposition, was adopted. In this algorithm, a new encoding method, which was beneficial to producing feasible individual, was presented. The efficiency of the algorithm was improved out. The results show that the proposed model can solve due to the perfect encoding. Finally, a test was carried effectively the problem of collaborative vehicle routing in logistics.

关 键 词:协同运输 多目标优化 进化算法 车辆路径问题 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象