检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国图象图形学报(A辑)》2000年第1期52-56,共5页Journal of Image and Graphics
基 金:国家自然科学基金资助项目!(69772041);高校博士点基金资助项目!(98005610)
摘 要:主要研究了受混合噪声污染图象的降噪滤波问题,运用模糊数学思想提出了一种基于模糊隶属度的加权均值滤波器.该算法利用模糊隶属度函数的概念,对均值滤波器的权值加以优化,使其不仅在降低高斯噪声的能力方面较均值滤波有所提高,而且对于脉冲噪声及混合噪声也有很好的抑制能力.This paper mainly studied the problem of the noise suppression for images corrupted by different kinds of noises. A weighted average filter based on the fuzzy theory is presented. The algorithm first looks on the pixels in the filter window as elements of a fuzzy set, and then optimizes the membership of each element of the fuzzy set by iteration ways. In the end, the filter gets its weights of the pixels in the window from the memberships of the fuzzy set. Computer simulations show that the presented filter is not only better than average filter in the field of suppression of Gaussian noise, but also good at the suppression of impulse noise. So it has good performance to image corrupted by mixture noise.
分 类 号:TN911.7[电子电信—通信与信息系统] TN713[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.21.218