Symmetry and Uniqueness of Solutions of an Integral System  

Symmetry and Uniqueness of Solutions of an Integral System

在线阅读下载全文

作  者:ZHANG Zhengce JIANG Minji 

机构地区:[1]College of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China [2]Beijing Areospace Control Center, Beijing 5130-109, P. R. China.

出  处:《Journal of Partial Differential Equations》2011年第4期351-360,共10页偏微分方程(英文版)

摘  要:In this paper, we study the positive solutions for a class of integral systems and prove that all the solutions are radially symmetric and monotonically decreasing about some point. Moreover, we also obtain the uniqueness result for a special case. We use a new type of moving plane method introduced by Chen-Li-Ou [1]. Our new ingredient is the use of Hardy-Littlewood-Sobolev inequality instead of Maximum Principle.

关 键 词:Radial symmetry UNIQUENESS integral system moving plane method. 

分 类 号:O178[理学—数学] TP273[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象