检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹小君[1,2] 李满春[2] 赵思峰[3] 王登伟[3]
机构地区:[1]南京大学地理与海洋学院,南京210093 [2]石河子大学信息科学与技术学院,石河子832000 [3]石河子大学农学院,石河子832000
出 处:《农业工程学报》2011年第12期136-140,共5页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家自然科学基金项目(30800733)资助;国家科技支撑项目(2007DAH121301)项目资助
摘 要:加工番茄早疫病的准确预测,有助于及时采取防治措施,降低产量损失。测定加工番茄早疫病冠层光谱,对380~760nm进行连续统去除变换,提取波段深度、波段位置、波段宽度、斜率、面积等特征参数,并对原始光谱提取红谷、绿峰、红边及相应波段位置等特征参数。利用Gram-Schmidt算法对特征参数进行成分提取,作为广义回归神经网络(GRNN)的输入变量,对加工番茄早疫病病情严重度进行预测。研究结果表明,与多元线性回归和偏最小二乘法预测模型比较,Gram-Schmidt算法与GRNN融合模型的预测精度相对较高,R2为0.843,RMSE为0.136,该方法能够对加工番茄早疫病病情严重度进行快速、准确的预测。Accurate prediction of early blight in processing tomato is good for taking active prevention measures and reducing loss of production. The canopy spectrum of early blight in processing tomato was measured, and continuum removal and transformation were conducted over 380-760 nm to get characteristic parameters of band depth, band position, band width, slope and area, and to extract characteristic parameters of red valley, green peaks, red edge and corresponding band position from original spectrum. Then the components were extracted from characteristic parameters by Gram-Schmidt algorithm, and the components were taken as input variable of General Regression Nerve Net (GRNN) to predict severity of early blight in processing tomato. The results show that compared with multiple linear regression prediction mode and prediction mode of partial least squares method, combined model of Gram-Schmidt algorithm and GRNN is more precise with R2 of 0.843 and RMSE of 0.136, which indicates that the model can rapidly and accurately predict the severity of early blight in processing tomato.
关 键 词:光谱分析 Gram-Schmidt算法 GRNN 加工番茄 早疫病
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15