检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:M·塞克厚勒什勒米 D·D·甘集 H·R·阿秀讷加德 H·B·若克尼 M.Sheikholeslami;D.D.Ganji;H.R.Ashorynejad;Houman B.Rokni(Faculty ofMechanical Engineering,Babol University of Technology,Babol,P 0.Box 484,IslamicRepublic of Iran)
机构地区:[1]巴博尔科技大学机械工程学院,巴博尔P.O.Box484,伊朗
出 处:《应用数学和力学》2012年第1期24-34,共11页Applied Mathematics and Mechanics
摘 要:用一种强有力的解析方法,称为Adomian分解法(ADM),来研究磁场和纳米颗粒对Jeffery-Hamel流动的影响.将该问题模型的控制方程,即将传统的流体力学Navier-Stokes方程和Maxwell电磁方程,简化为非线性的常微分方程.该方法得到的结果与Runge-Kutta方法得到的数值结果相一致,结果用表格列出.不同α,Ha和Re数下的图形表明,本方法可以得到高精度的结果.首先对不同的Hartmann数和管壁倾角,研究喇叭形管道中的流场;最后在没有磁场作用时,研究纳米固体颗粒体积率的影响.The effect of magnetic field and nano particle on the Jeffery-Hamel flow were stud- ied by a powerful analytical method that was called Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell' s electromagnetism gov- erning equations were reduced to nonlinear ordinary differential equations to model this prob- lem. The obtained results by this method are well agreed with the numerical (Runge-Kutta method) results and tabulated in a table. The plots confu'm that the used method is in high accuracy for different α, Hα and Re numbers. First the flow field inside the divergent channel was studied for various values of Hartmann number and angle of channel and at last the effect of nanoparticle volume fraction in absence of magnetic field was investigated.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.220.116