基于AR信号处理和KⅡ模型的嗅觉识别算法  

Olfactory recognition algorithm based on AR signal processing and KⅡ model

在线阅读下载全文

作  者:王丽贤[1] 牛廷伟[1] 杨淑莹[1] 

机构地区:[1]天津理工大学计算机与通信工程学院,天津300384

出  处:《天津理工大学学报》2011年第5期40-45,共6页Journal of Tianjin University of Technology

基  金:天津市高等学校科技发展基金(20071308)

摘  要:信号的特征提取和模式识别方法,在实现准确的电子鼻气体定性分析中尤为关键,本文提出了基于AR信号处理和KII模型的嗅觉识别算法.将传感器信号分为:上升期和稳定期两部分,对上升期信号提取斜率作为特征;对稳定期信号,进行AR建模来提取特征.在电子鼻的模式识别算法上,利用KII模型对气味信号进行分类.该方法充分利用了AR信号处理在信号表示方面的有效性及降维优势、KII模型在模式识别方面的优越性.仿真将该方法与BP网络、AR_BP算法及单KII网络进行了比较,结果表明,AR信号处理技术可以很好的提取特征,并与KII建立相关的数学模型,将AR信号处理技术应用到电子鼻系统中是可行的,且具有更高的识别率.Signal characteristics extraction and patteru recognition, in accurate gas analysis is critical for electronic nose, Ol- factory recognition algorithm based on AR signal processing and KII model (AR_KII) is proposed. Sensor signals are divided into two parts: rising and stable period, extract the rising periodg signal slope as features; stable signal AR model to extract features. On pattern recognition algorithm of electronic nose, to classify the odor signals by KII model. This method made use of AR signal processing to signal that the effectiveness of and dimension reduction advantages and superiority of KII mod- el in terms of pattern recognition. Compare ARBP with the BP network, AR_BP, KII and KII_BP through Simulation, ex- perimental results show that the AR feature extraction of the signal processing techniques work well, and build related mathe- matical models and KII, AR signal processing techniques applied to the electronic nose system is feasible and has a high recognition rate.

关 键 词:嗅觉识别 AR信号处理 KII模型 电子鼻 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象