基于SVM的房地产投资风险评价及应用  被引量:7

在线阅读下载全文

作  者:李毅[1] 

机构地区:[1]重庆大学建设管理与房地产学院,重庆400045

出  处:《统计与决策》2012年第1期70-72,共3页Statistics & Decision

基  金:中央高校基本科研业务资助项目(CDJSK100142)

摘  要:房地产开发是一项高投入、高收益、高风险的投资活动,受社会、经济、技术等因素的影响较大,在开发过程中存在着不确定性,在为投资者提供高收益可能的同时,也蕴含着相应的高风险。文章引进一种新的方法——支持向量机将其应用到房地产投资风险评价中。并尝试建立了基于SVM的房地产投资风险评价模型。支持向量机(SVM)是一类新型的机器学习算法,它能够非常成功地处理分类和回归问题。这种方法比较新颖,在一些领域有初步研究,但是在房地产领域基本没有研究过,其良好的非线性品质、极高的拟合精度、灵活而有效的学习方式、不依赖于样本的特点,使房地产投资风险预测很好。

关 键 词:房地产 支持向量机 风险评价 

分 类 号:F293.3[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象