检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学电子科学与工程学院,南京210018
出 处:《光电子技术》2011年第4期240-244,共5页Optoelectronic Technology
摘 要:提出一种基于人工神经网络算法,应用于膜系的设计。在膜系自动优化过程中,根据确定的边界条件范围内,计算出膜系设计的最优解。采用了新型的评价函数,使得设计结果更符合设计要求。优化过程中能够快速学习网络权重,并且能够摆脱局部极点的问题。结果表明在同样的条件下,人工神经网络算法可以得到更合理的膜系。A network algorithm based on artificial neural network is proposed for coating design. The optimal solution is calculated during Auto-optimization process of coating according to the boundary conditions, which is more suitable when a new evaluation function is utilized. The network weights can be quickly learned during the optimization process, and can get rid of local pole. The results witness a more reasonable coating under the same conditions. The quantity of training samples determines the quality of neural network. As the sample reaches a certain number, a better training neural networks is achieved. However, an excessive number of samples can slow down the training and computing and thus affect the training effect, whereas insufficient number of training samples cannot result in suitable training, affecting the membrane system optimization.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157