一种基于内壳向量的SVM增量式学习算法  被引量:2

A SVM incremental learning algorithm based on inner hull vectors

在线阅读下载全文

作  者:王一[1,2] 杨俊安[1,2] 刘辉[1,2] 耿钦[1] 

机构地区:[1]电子工程学院,安徽合肥230037 [2]安徽省电子制约技术重点实验室,安徽合肥230037

出  处:《电路与系统学报》2011年第6期109-113,共5页Journal of Circuits and Systems

基  金:国家自然科学基金(60872113)

摘  要:本文针对支持向量机难以快速有效地进行增量式学习的问题,提出了一种基于内壳向量的支持向量机增量式学习算法。算法通过线性规划运算求得最可能包含支持向量的壳向量和内壳向量集合,在保证分类精度的前提下最大程度地缩小训练集规模,进而在新的训练集中快速训练支持向量机。将该算法应用于公开数据及低空飞行声目标分类识别,结果表明,新算法缩短了训练时间,且比现有其他算法具备更高的分类精度和稳定性。We present an algorithm based on inner hull vectors for SVM incremental learning in this paper. In our algorithm, a set of hull vectors and inner hull vectors which most likely to become the support vectors are extracted from the training samples by using the linear programming, the obtained hull vectors and inner hull vectors are conjoined as a part of updated training samples which is smaller than the original training samples, then using the updated training samples to reconstruct the SVM. The proposed algorithm is tested on public databases and low altitude tlying acoustic targets data. Experiment results show that the proposed method is more precise and stable than the other methods and also expedite the SVM training.

关 键 词:支持向量机 增量学习 壳向量 内壳向量 

分 类 号:TN959[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象