检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工业大学计算机科学与技术学院,杭州310023
出 处:《传感技术学报》2011年第12期1723-1727,共5页Chinese Journal of Sensors and Actuators
基 金:国家自然科学基金项目(61070043);浙江省自然科学基金项目(Y1100611)
摘 要:为了使手势交互较少受到视角和光线的限制,提出利用可穿戴传感器作为输入设备和机器学习算法相结合进行手势识别的方法。通过采集加速度仪和地磁仪的数据,然后进行预处理、特征提取和特征选择,最终由隐马尔科夫模型进行手势分类和识别。为验证方法的有效性,设计实现了一个原型系统进行识别和对比实验。实验结果表明,该方法可以实时有效地对手势特别是复杂的手势进行识别。Motion sensing techniques are less limited in space and lighting from the point of view of human computer interaction.On-body wearable sensors are used to study on how to effectively build gesture recognition system with machine learning methods.Acceleration and magnetic data collected by accelerometer and magnetometer are then used by the hidden Markov model.Data processing steps contain preprocessing,feature selection and extraction.A prototype system is developed to verify the effectiveness of the approach.The results show that the approach can effectively recognize some gestures,especially complicated ones in real time.
分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44