检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学研究》2011年第4期356-360,共5页Journal of Mathematical Study
基 金:supported by NSFC(No.11101345);Fujian Provincial Department of Education(JA10244)
摘 要:简单图G的全染色是指对G的点和边都进行染色.称全染色为正常的如果没有相邻或关联元素染同一种颜色.简单图G=(V,E)的正常全染色h称为它的邻点可区别全染色如果对任意两个相邻顶点u、v,有H(u)≠H(u),其中H(u)={h(u)}∪{h(uw)|uw∈E(G)}而H(v)={h(v)}∪{h(vx)|vx∈E(G)}.G的邻点可区别全染色所需最少颜色数称为G邻点可区别全色数,记为χat(G).本文考虑折叠立方体图FQ_n的邻点可区别全色数,证明了对任意n≥2,有χat(FQ_n)=n+3.A total coloring of a simple graph G is a coloring of both edges and vertices. A total coloring is proper if no two adjacent or incident elements receive the same color. An adjacent vertex-distinguishing total coloring h of a simple graph G = (Y,E) is a proper total coloring of G such that H(u)≠ H(v) for any two adjacent vertices u and v, where H(u) = {h(u)} U) (h(uw)|uw ∈ E(G)} and H(v) = {h(v)} U {h(vx)[vx ∈ E(G)}. The minimum number of colors required for an adjacent vertex-distinguishing total coloring of G is called the adjacent vertex- distinguishing total chromatic number of G and denoted by Xat(G). In this paper, we consider the adjacent vertex-distinguishing total chromatic number of the folded hypercubes FQn and prove that Xat(FQn) = n + 3 for n ≥ 2.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.18.110